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ABSTRACT
The transition of an impulsively excited kink oscillation of a solar coronal loop to an oscillation with a stationary amplitude, i.e.,
the damping pattern, is determined using the low-dimensional self-oscillation model. In the model, the decayless kink oscillations
are sustained by the interaction of the oscillating loop with an external quasi-steady flow. The analytical solution is based on
the assumption that the combined effect of the effective dissipation, for example, by resonant absorption, and interaction with
an external flow, is weak. The effect is characterised by a dimensionless coupling parameter. The damping pattern is found to
depend upon the initial amplitude and the coupling parameter. The approximate expression shows a good agreement with a
numerical solution of the self-oscillation equation. The plausibility of the established damping pattern is demonstrated by an
observational example. Notably, the damping pattern is not exponential, and the characteristic decay time is different from the
time determined by the traditionally used exponential damping fit. Implications of this finding for seismology of the solar coronal
plasmas are discussed. In particular, it is suggested that a very rapid, in less than the oscillation period, decay of the oscillation to
the stationary level, achieved for larger values of the coupling parameter, can explain the relative rareness of the kink oscillation
events.
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1 INTRODUCTION

The observational study and theoretical modelling of magnetohydro-
dynamic (MHD) wave processes in the corona of the Sun remain one
of the key topics of modern solar physics (see, e.g., Nakariakov &
Kolotkov 2020). Coronal MHD waves and oscillations attract atten-
tion mainly as possible agents which transfer the energy from lower
to higher layers of the solar atmosphere (e.g., Parnell & De Moortel
2012; Van Doorsselaere et al. 2020), and as natural probes of coronal
plasma structures (e.g., Nakariakov et al. 2024). In addition, coronal
MHD waves may play some role in solar flares (e.g., Fletcher &
Hudson 2008; Nakariakov et al. 2010; McLaughlin et al. 2018).

One of the intensively studied coronal MHD wave phenomena
are kink oscillations of coronal plasma loops (e.g., Nakariakov et al.
2021, for a recent comprehensive review). Typically, kink oscillations
are detected either as transverse displacements of the loop in the plane
of the sky with imaging instruments (e.g., Aschwanden et al. 1999),
or as periodic displacements of coronal emission lines in the spectral
domain (e.g., Tian et al. 2012).

In observations, kink oscillations appear in two regimes. The large-
amplitude rapidly-decaying regime is characterised by the displace-
ment amplitude exceeding several minor radii of the oscillating loop,
and very short damping time, of a few oscillation periods. The os-
cillation period scales linearly with the oscillating loop length (e.g.,
Goddard et al. 2016; Nechaeva et al. 2019). The decay time has been
found to show a linear dependence on the oscillation period (e.g.,
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Ofman & Aschwanden 2002; Goddard et al. 2016; Nechaeva et al.
2019). The quality factor defined as the ratio of the damping time
to the oscillation period, decreases with the relative displacement
amplitude to the minus two thirds (Goddard & Nakariakov 2016;
Nakariakov & Kolotkov 2020). The oscillations are impulsively ex-
cited by the displacement of the loop from the equilibrium by a low
coronal eruption (Zimovets & Nakariakov 2015), or are associated
with a flare (Aschwanden et al. 1999).

The decayless regime is characterised by low displacement ampli-
tude, typically smaller than the minor radius of the oscillating loop
(e.g., Wang et al. 2012; Tian et al. 2012; Gao et al. 2022b; Guo et al.
2022; Mandal et al. 2022; Gao et al. 2022a; Zhong et al. 2023a;
Gao et al. 2024). The detection of the same decayless kink oscilla-
tions with two different EUV imagers confirmed that it is a natural
phenomenon and not an instrumental artefact (Zhong et al. 2022b).
Decayless kink oscillations may last for several tens of oscillation
cycles with irregular variation of the oscillation parameters around
a mean value (Zhong et al. 2022a). The distribution of the detected
oscillation amplitudes with the oscillation period is rather flat, in-
dicating the lack of a resonant driver (Nakariakov et al. 2016). The
simultaneous detection of a decayless kink oscillation from two lines-
of-sights separated by about 104◦, revealed a horizontal or weakly
oblique linear polarisation of the oscillation (Zhong et al. 2023b).

As in the decaying regime, the oscillation period scales linearly
with the loop length (e.g., Anfinogentov et al. 2013; Li & Long
2023). The ratio of double the loop lengths and the periods corre-
sponds to the phase speed consistent with the coronal kink speed of
about a thousand km s−1. Phase speeds about this value appear in
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2 V. M. Nakariakov et al.

decayless kink oscillations of both very long, ∼750 Mm, and very
short, ∼5 Mm coronal loops (see Zhong et al. 2023a; Petrova et al.
2023, respectively). On the other hand, observations of decayless
kink oscillations in short 5–20 Mm loops, also called coronal bright
points, gave much longer periods, of several minutes, which showed
no systematic scaling with the loop length (Gao et al. 2022b). Similar
oscillations have been observed in cold, transition region loops (Gao
et al. 2024).

Theoretically, kink oscillations are modelled as fast magnetoa-
coustic waves guided by perpendicular non-uniformity of equilib-
rium plasma parameters, such as the plasma density, of the 𝑚 = 1
symmetry, where 𝑚 is the azimuthal mode number (e.g., Edwin &
Roberts 1982, 1983). An alternative interpretation has been sug-
gested, in terms of an incompressive surface Alfvén wave (Goossens
et al. 2012). These two approaches converge in the infinite wavelength
limit, while differ for finite wavelengths. The further discussion of
this matter is beyond the scope of this paper.

The rapid damping of decaying kink oscillations is traditionally
associated with the effect of resonant absorption, based on the lin-
ear transformation of the collective fast magnetoacoustic mode into
highly-localised incompressive Alfvénic motions in the vicinity of
a narrow resonant layer where the local Alfvén speed coincides
with the kink speed (e.g., Goossens et al. 1992, 2002; Ruderman
& Roberts 2002; Goossens et al. 2006). The plausibility of kink
oscillation damping by resonant absorption does not require the os-
cillating loop to have a circular cross-section or be embedded in a
uniform environment (e.g., Pascoe et al. 2011; Shi et al. 2024). This
mechanism prescribes an exponential decay of the kink oscillation,
with the damping time proportional linearly to the oscillation pe-
riod. Furthermore, the initial stage of the kink oscillation damping is
described by a Gaussian profile, resulting in a generalised, Gaussian-
exponential damping pattern (e.g., Pascoe et al. 2012; Hood et al.
2013; Pascoe et al. 2019). Steep azimuthal shear flows generated by
resonant absorption of kink oscillations have been shown to induce
the Kelvin–Helmholtz instability (KHI) and uniturbulence which fur-
ther enhance the damping (e.g., Magyar & Van Doorsselaere 2016;
Van Doorsselaere et al. 2021). This finding is in qualitative agreement
with the empirically determined dependence of the kink oscillation
quality factor on the initial amplitude (Goddard & Nakariakov 2016;
Nechaeva et al. 2019; Arregui 2021).

A mechanism responsible for sustaining decayless kink oscilla-
tions, i.e., compensating the energy decay, is subject to an intensive
ongoing study. Decayless kink oscillations have been found in global
simulations of the solar atmosphere from the convection zone to the
solar corona (Kohutova & Popovas 2021). Antolin et al. (2016); Guo
et al. (2019) suggested that a decayless oscillatory pattern can result
from the combination of periodic brightenings produced by the KHI
and the coherent motion of the KHI vortices, affected by finite spatial
resolution and narrowband temperature response function. Li et al.
(2023) detected a decayless kink oscillation that lasted five oscillation
cycles and occurred simultaneously with a quasi-periodic pulsation
pattern in a nearby flare, suggesting a possible relationship between
these two phenomena. An apparent decayless phase has been noticed
in numerical simulations of the evolution of an impulsively excited
kink oscillation in terms of the ideal incompressible model (Soler
& Terradas 2015). A similar behaviour has been detected (Shi et al.
2024) in the compressible model too. The decayless phase appears
because of the interference of the torsional perturbations excited by
resonant absorption, and hence can be considered as an “extended”
phase of an impulsively excited kink oscillation. However, those
mechanisms have difficulties explaining the long-durational appear-
ance of decayless kink oscillations, as well as their regular appearance

without any nearby flares or other impulsive energy releases. Lopin
& Nagorny (2024) associated 5-min decayless kink oscillations ob-
served in short loops with slow magnetoacoustic oscillations driven
by photospheric oscillations. However, it is questionable whether
high values of the plasma 𝛽, 0.3–0.5, required by this mechanism are
consistent with those in coronal loops. Additionally, this mechanism
can produce kink oscillations polarised solely within the plane of
the loop. Random motions of footpoints of the oscillating loop can
supply the energy required to sustain the oscillations too (Afanasyev
et al. 2020). The plausibility of this mechanism has been demon-
strated analytically (Ruderman & Petrukhin 2021; Ruderman et al.
2021) and also through full MHD 3D numerical simulations (Karam-
pelas & Van Doorsselaere 2024). However, it is not clear whether
this scenario can reproduce linearly polarised oscillations observed
in the corona. Long-period decayless kink oscillations of short loops
can be non-resonantly driven by photospheric and chromospheric
oscillatory processes (e.g., Gao et al. 2023), but this phenomenon is
out of scope of this paper.

Quasi-stationary flows, with the evolution times much longer than
the kink oscillation period, can sustain decayless kink oscillations
through the nonlinear self-oscillatory mechanism. These flows could
correspond to the most powerful, low-frequency part of the red noise
spectrum of solar atmospheric movements (e.g., Auchère et al. 2014;
Gupta 2014; Ireland et al. 2015; Kolotkov et al. 2016; Aschwanden
& Nhalil 2023). In this scenario, the energy to compensate damping
losses is supplied by the negative friction between the oscillating
loop and an external quasi-stationary flow. This process is simi-
lar to the vibration of a violin string, sustained by a moving bow.
The concept of the self-oscillatory mechanism was demonstrated
in a low-dimensional model by Nakariakov et al. (2016), and con-
firmed by full MHD 3D numerical simulations by Karampelas & Van
Doorsselaere (2020). Self-oscillation periods are determined by the
oscillating loop length and the kink speed, and are weakly sensitive
to random time variations of the model parameters and noisy driving
(Nakariakov et al. 2022). Furthermore, the amplitude experiences
gradual fluctuations consistent with the observed behaviour (Zhong
et al. 2022a).

The transition from the decaying to decayless regimes (see Nisticò
et al. 2013, for an observational example) can provide empirical in-
formation essential for uncovering the mechanism behind decayless
kink oscillations. In particular, Nakariakov & Yelagandula (2023)
demonstrated that one can distinguish between the randomly driv-
ing and self-oscillatory scenarios by the pattern of the oscillation
decay to the stationary, i.e., decayless amplitude. In the random-
driving scenario, the damping is exponential, provided the damp-
ing mechanism is linear. In self-oscillations, the damping pattern
was found to be super-exponential. The Markov chain Monte Carlo
Bayesian comparison of the exponential, Gaussian–exponential, and
super-exponential damping models, performed on ten kink oscilla-
tion events, showed the preference of the super-exponential damping
(Zhong et al. 2023c). However, the super-exponential damping is just
a guessed pattern, and there is a need for the derivation of a damping
pattern determined by parameters of the self-oscillator.

The aim of this paper is to determine the functional expression
for the evolution of the kink oscillation amplitude during the tran-
sition from the decaying to decayless regimes with the use of the
low-dimensional self-oscillator model proposed in Nakariakov et al.
(2016). In Section 2 we formulate the problem. In Section 3 we
obtain and study an asymptotic solution, and demonstrate its plausi-
bility by an observational example in Section 4. The obtained results
are discussed, and conclusions are given in Section 5.
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Transition from decaying to decayless kink oscillations 3

2 PROBLEM FORMULATION AND GOVERNING
EQUATIONS

Following the formalism developed in Nakariakov et al. (2016);
Nakariakov & Yelagandula (2023), we describe an impulsively
excited kink oscillation using the low-dimensional self-oscillator
model. The model is based on the assumption that the oscillation
occurs in a kink resonator with the resonant frequency Ωk = 𝜋𝐶k/𝐿
determined by the loop length 𝐿 and the kink speed 𝐶k. In this study
we consider the loop to behave as a single-mode kink resonator. The
oscillation is subject to a linear damping 𝛿 which represents, for ex-
ample, the energy flow to Alfvénic motions by resonant absorption.
Furthermore, the damping is compensated by the interaction of the
loop with an external quasi-steady flow with the speed 𝑣0 via negative
friction. Thus, the governing equation is

¥𝜉 + 𝛿 ¤𝜉 +Ω2
k𝜉 = 𝐹 (𝑣0 − ¤𝜉), (1)

where 𝜉 is the displacement of the loop, the independent variable 𝑡

is time, and the right hand side term 𝐹 describes the interaction with
the external flow. Taylor expanding the function 𝐹 and accounting for
the first two terms, we obtain the self-oscillator ordinary differential
equation,

¥𝜉 +
[
(𝛿 − 𝛿v) + 𝛼

( ¤𝜉)2] ¤𝜉 +Ω2
k𝜉 = 0, (2)

where 𝛿v and 𝛼 are the constant coefficients of the two lowest order
terms in the expansion (e.g., Jenkins 2013). For positive Δ = 𝛿v − 𝛿

and 𝛼, Eq. (2) has a stable limit cycle solution

𝜉∞ =

√︃
4Δ/(3𝛼Ω2

k), (3)

which corresponds to the decayless oscillatory pattern.
With the use of the dimensionless variables,

𝑌 =

(
3𝛼Ω2

k
Δ

) 1
2

𝜉, 𝑡 = Ωk𝑡, (4)

Eq. (2) becomes

𝑌 ′′ + 𝑌 = 𝜇

[
𝑌 ′ − (𝑌 ′)3/3

]
, (5)

where 𝜇 = Δ/Ωk and the prime denotes the derivative with respect
to the dimensionless variable 𝑡. In the following the bar over the
time variable will be omitted. The coefficient 𝜇 which accounts for
both the dissipation and negative friction can be called the coupling
parameter.

Eq. (5) needs to be supplemented by initial conditions, for example,

𝑌 (0) = 2𝑎, 𝑌 ′ (0) = 0, (6)

which correspond to the excitation of a kink oscillation by a dis-
placement of the loop from an equilibrium (Zimovets & Nakariakov
2015).

3 ASYMPTOTIC SOLUTION

Considering the coefficient 𝜇 as a small parameter, we can determine
an approximate solution to Eq. (5) using the standard asymptotic
multi-scale method (e.g., Andronov et al. 1966). Let us look for a
solution in a form of the asymptotic expansion by 𝜇,

𝑌 (𝑡) = 𝑌0 (𝑡, 𝜏) + 𝜇𝑌1 (𝑡, 𝜏) + ..., (7)

where 𝜏 = 𝜇𝑡 is the “slow” time. Substituting expansion (7) to Eq. (5),
and combining terms in front of different powers of the small param-
eter 𝜇, we obtain in the lowest order, 𝜇0,

𝑌 ′′
0 + 𝑌0 = 0. (8)

Thus 𝑌0 = 𝐴(𝜏) exp(𝑖𝑡) + 𝐴∗ (𝜏) exp(−𝑖𝑡), where the superscript “*”
denotes the complex conjugate.

The terms of the first order, 𝜇1, give us

𝑌 ′′
1 + 𝑌1 = 2

(
−𝑖 𝑑𝐴

𝑑𝜏
𝑒𝑖𝑡 + 𝑖

𝑑𝐴∗

𝑑𝜏
𝑒−𝑖𝑡

)
+ 𝑖𝐴𝑒𝑖𝑡 − 𝑖𝐴∗𝑒−𝑖𝑡 (9)

−1
3

(
−𝑖𝐴3𝑒3𝑖𝑡 + 𝑖𝐴∗3𝑒−3𝑖𝑡 + 3𝑖 |𝐴|2𝐴𝑒𝑖𝑡 − 3𝑖 |𝐴|2𝐴∗𝑒−𝑖𝑡

)
.

The secular growth of the variable 𝑌1 requires the right hand side of
Eq. (9) to be out of resonance with the natural frequency of the left
hand side, thus

2𝑖
𝑑𝐴∗

𝑑𝜏
− 𝑖𝐴∗ + 𝑖 |𝐴|2𝐴∗ = 0,

−2𝑖
𝑑𝐴

𝑑𝜏
+ 𝑖𝐴 − 𝑖 |𝐴|2𝐴 = 0.

(10)

Introducing 𝐴(𝜏) = 𝑅(𝜏) exp[𝑖𝜃 (𝜏)], where both the modulus 𝑅 and
phase 𝜃 are real functions, we equate both imaginary and real parts
to zero. Thus, we obtain from (10) the separable ordinary differential
equation

2
𝑑𝑅

𝑑𝜏
= 𝑅 − 𝑅3, (11)

with the solution

𝑅(𝜏) = 𝑅(0)√︁
𝑒−𝜏 + 𝑅2 (0) (1 − 𝑒−𝜏 )

, (12)

and a constant 𝜃 = 𝜃0. Applying initial conditions (6), we get 𝜃0 = 0
and 𝑅(0) = 𝑎. Thus, the asymptotic solution to the initial value
problem (5)–(6) is

𝑌 (𝑡) = 2𝑅(𝜏) cos(𝑡) − 1
3
𝜇𝑅3 (𝜏) sin3 (𝑡) + .... (13)

Thus, in the leading term only, we obtain

𝑌 (𝑡) ≈ 𝐷 (𝑡) cos(𝑡). (14)

where the factor in front of the cosine, 𝐷 (𝑡), describes the evolution
of the oscillation amplitude,

𝐷 (𝑡) = 2𝑎√︁
𝑒−𝑡/𝜏as + 𝑎2 (1 − 𝑒−𝑡/𝜏as )

. (15)

Here, the quantity 𝜏as = 𝜇−1 is the characteristic time of the ampli-
tude evolution. In particular, it describes how rapidly the oscillation
decays if the initial amplitude exceeds the stationary amplitude. In
the following, we refer to the function describing the amplitude evo-
lution, i.e., the envelopes of the oscillations, as the damping pattern.

In the limit 𝑡 → +∞, the amplitude approaches the value of 2,
which is the stationary amplitude of the self-oscillation, i.e., the am-
plitude of the decayless regime. In the phase portrait of Eq. (5), this
corresponds to a stable limit cycle (e.g., Jenkins 2013). In dimen-
sional quantities, it is equivalent to the value 𝜉∞ given by Eq. (3).
The oscillation either grows or decays to the stationary amplitude,
depending upon whether the initial amplitude is higher or lower than
the stationary amplitude, respectively, see Fig. 5 in Nakariakov et al.
(2016). Fig. 1 shows that for the initial amplitudes up to about an order
of magnitude higher than the stationary amplitude, the approximate
asymptotic damping pattern given by Eq. (15) is in a good agreement

MNRAS 000, 1–8 (2024)



4 V. M. Nakariakov et al.

with the numerical one. However, for a large initial amplitude, there
is a visible discrepancy.

In the dimensionless case described by Eq. (5), the amplitude of the
stationary self-oscillation is independent of the initial amplitude 2𝑎
and the coupling parameter 𝜇. The value of 𝜇 controls the steepness
of the damping pattern, as shown in Fig. 2, where the damping
envelopes are calculated from Eq. (15). Large values of 𝜇, i.e., the
stronger coupling of the loop motion with the external quasi-steady
flow, result in more rapid damping of the oscillation to the stationary
amplitude.

For large values of the initial amplitude, 𝑎 ≫ 1, i.e., when the
initial amplitude is very much larger than the stationary amplitude,
expression (15) reduces to

𝐷 (𝑡) ≈ 2
[
1 − exp(−𝑡/𝜏as)

]−1/2
, (16)

and becomes independent of 𝑎.
Fig. 3 shows damping patterns given by different models. Here we

compare the asymptotic solution given by Eq. (15), the exponential
damping

𝐷e (𝑡) = 2𝑎 exp(−𝑡/𝜏e), (17)

which is prescribed by the resonant absorption of a free kink oscil-
lation (e.g., Ruderman & Roberts 2002); the exponential damping to
the oscillation with the constant amplitude 2,

𝐷ec (𝑡) = (2𝑎 − 2) exp(−𝑡/𝜏ec) + 2, (18)

which described a decayless oscillation sustained by a random driver
(Nakariakov & Yelagandula 2023); and the super-exponential damp-
ing to the oscillation with the constant amplitude,

𝐷se (𝑡) = (2𝑎 − 2) exp[−(𝑡/𝜏se)𝑝] + 2, (19)

which was an empirical guess made in Nakariakov & Yelagandula
(2023). In Eqs. (17)–(19), the constants 𝜏e, 𝜏ec, and 𝜏se are the char-
acteristic damping times, and 𝑝 is the super-exponential decay index.
All patterns begin at the initial amplitude 2𝑎. Here, we do not use
the Gaussian-exponential damping pattern, as the fitted oscillatory
curve does not demonstrate this property. Interestingly, the super-
exponential decay pattern is very similar to the asymptotic pattern.
The semi-logarithmic plot suggests the possibility to distinguish be-
tween the traditionally used exponential damping pattern which ap-
pears to be a straight line, and the other patterns.

Fig. 1 shows that for a fixed value of the coupling coefficient 𝜇
the match of damping pattern (15) with the numerical solution of
the self-oscillation equation worsens with the increase in the ratio of
the initial and stationary amplitudes. However, for the same initial
amplitude the transition to the decayless regime may be much slower.
Fig. 4 demonstrates that for smaller damping parameters the damp-
ing pattern is consistent with the asymptotic solution, as one would
expect for an asymptotic solution.

4 AN OBSERVATIONAL EXAMPLE

The damping patterns given by Eqs. (15) and (16) are different from
the exponential damping patterns traditionally used in the analysis of
decaying kink oscillations, in particular, in the catalogues (Goddard
et al. 2016; Nechaeva et al. 2019). Furthermore, Zhong et al. (2023c)
demonstrated that non-exponential damping patterns may be more
consistent with observations. Here, we illustrate the plausibility of
the asymptotic damping pattern by reanalysing a kink oscillation
event.

The event of our interest was observed by Nisticò et al. (2013) on
May 30, 2012, in active region NOAA 11494, with the Atmospheric
Imaging Assembly (AIA) on the Solar Dynamics Observatory space-
craft. The oscillation clearly showed the transition from the decaying
to the decayless regimes. The time–distance map was made for a
5-pixel-wide slit {(−973.0′′,−366.0′′), (−995.5′′,−330.0′′)}, per-
pendicular to the oscillating loop near the apex in the stack of 171Å
images in the time interval 08:57:42–09:49:42 UT, see Fig. 5a.

The damping pattern described by Eq. (15) was compared with
the observed behaviour of the kink oscillation through the following
steps. First, we quantify the oscillating signals both at the loop cen-
tre and boundary. From the high-contrast upper loop boundary (see
Fig. 5a), we extracted the boundary displacement 𝜉1 manually, and
repeated this operation three times to reduce uncertainty. In addition,
the displacements were determined automatically by four loop track-
ing methods described in Zhong et al. (2023c) to obtain signals for
the loop center displacements 𝜉2–𝜉5.

Then, we determine the background trend of the oscillatory signals
𝜉1–𝜉5 with the detrending method described in Zhong et al. (2022a).
After identifying the oscillation crests and troughs, i.e., the extrema of
the displacement positions, we used the spline interpolation to obtain
the background trends BG1–BG5 of the signals 𝜉1–𝜉5, respectively.
In the following we use a detrended signal obtained by subtracting
the average background trend from the average signal.

Parameters 𝑎 and Ωk of the asymptotic damping pattern are de-
termined from the observed signal. We chose the first oscillation
crest at 09:04:12 UT as a starting point and extracted the initial
amplitude 𝐴0 = 2.90 Mm. The decayless amplitude is estimated as
𝐴∞ = 0.44 Mm from the detrended signal. Then, the ratio of the ini-
tial and stationary amplitudes allows us to estimate the dimensionless
parameter 𝑎 = 𝐴∞/𝐴0 ≈ 6.6. The average time between maxima (or
minima) of the oscillation gives us the oscillation period and hence
the angular frequency, Ωk ≈ 1.50 rad s−1.

As the normalised scale in Eq. (4) can be expressed as
√︁
𝜇/(3𝛼Ωk)

and calculated from the ratio of 𝐴0 to 2𝑎, we have the relation
𝛼 = 4𝜇𝑎2/(3Ω𝑘𝐴

2
0). It leaves us with a single free parameter in the

expression for the damping pattern, 𝜏as = 𝜇−1. The best-fitting value
of this parameter, 𝜇 = 1.5 × 10−3, is then determined by the least
square method.

Fig. 5 demonstrates a fairly good agreement between the asymp-
totic damping pattern described by Eq. (15) with the observed tran-
sition of a kink oscillation to the decayless regime.

5 DISCUSSION AND CONCLUSIONS

In terms of the low-dimensional self-oscillation model, we consider
the evolution of amplitude of a kink oscillation excited by an initial
displacement of the loop from the equilibrium. Because of the inter-
action of the oscillating loop with an external quasi-steady flow with
a time scale much longer than the oscillation period, the oscillation
approaches a stationary amplitude regime which may be responsible
for the decayless kink oscillations ubiquitously present in the corona.
Assuming the combined effect of the dissipation and coupling with
an external flow to be weak, we determined the asymptotic expres-
sion which describes the transition of a decaying kink oscillation to
the stationary amplitude. This dependence differs from the exponen-
tial one. In dimensionless variables, when the time is measured in
oscillation periods, and the amplitude is in units of the stationary
amplitude, the damping pattern includes two free parameters: the
initial amplitude and a parameter which accounts for the dissipation
and coupling, see Eq. (15). The dependence of the damping of kink
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Transition from decaying to decayless kink oscillations 5

Figure 1. Comparison of the numerical and asymptotic solutions of the self-oscillator equation with the coupling parameter 𝜇 = 0.03. The left, middle and right
panels show the solutions with the initial amplitudes 5, 15 and 30 times higher than the stationary amplitude, respectively. Red solid curves show numerical
solutions. Magenta dashed horizontal lines indicate the stationary (decayless) amplitude which is equal to 2 in all cases. Blue dotted curves show asymptotic
solutions. The oscillation period is 2𝜋 time units.

Figure 2. Damping patterns of a self-oscillation approaching the stationary
amplitude for different values of the coupling parameter 𝜇: the blue solid
curve corresponds to 𝜇 = 0.015, the magenta dotted curve to 𝜇 = 0.03, and
the brown dashed curve to 𝜇 = 0.06. The oscillation period is 2𝜋 time units.

oscillations on the initial amplitude is in a qualitative agreement with
statistical results obtained by Arregui (2021). The damping time is
determined by the difference between the negative friction between
the oscillating loop and the external flow, and the effective damp-
ing due to, e.g., resonant absorption. The low-dimensional model
employed here does not allow us to link this with specific physi-
cal quantities, which is a task of a future full-scale modelling. The
derived damping pattern is found to be in a fairly good agreement
with an observational example of the transition from the decaying
to decayless regimes of kink oscillations (Nisticò et al. 2013). The
comparison of different damping scenarios, and its use for revealing

the mechanism for sustaining the decayless regime require a larger
number of such events.

If the initial amplitude exceeds significantly the stationary am-
plitude of the self-oscillation, the damping pattern becomes inde-
pendent of the initial amplitude. The oscillation still asymptotically
diminishes towards the stationary value. In observations, the station-
ary amplitude may be below the threshold of detection, determined
by the spatial resolution and sensitivity of the instrument. In this
case, the kink self-oscillation appears as a regular decaying oscil-
lation. However, the damping pattern is not exponential, and the
characteristic decay time is different from the time determined by
the exponential fit. In certain cases, the asymptotic solution shows
a good fit with the super-exponential damping pattern proposed in
Nakariakov & Yelagandula (2023). It is consistent with the prefer-
ence for the super-exponential damping model over exponential and
the Gaussian–exponential damping models, established by the anal-
ysis of ten randomly selected kink oscillation events (Zhong et al.
2023c). If the prevalence of the non-exponential damping pattern is
confirmed through the re-analysis of a statistically significant number
of decaying kink oscillations, e.g., with the use of the catalogue of
Nechaeva et al. (2019), it would suggest the necessity of recalculating
of the oscillation damping times and their scaling with other oscil-
lation parameters, such as periods and amplitudes. In turn, it would
require the modification of the seismological techniques based on
the use of the kink oscillation damping time (e.g., Aschwanden et al.
2003; Arregui et al. 2007; Pascoe 2014; Pascoe et al. 2018; Arregui
2018; Arregui et al. 2019; Arregui 2022). Furthermore, the indepen-
dence of the damping pattern of the initial amplitude, derived in the
limit of a large initial amplitude does not contradict the results of
Arregui (2021), as that study was based on the assumption that the
initial amplitude is finite and the oscillation decays to a zero ampli-
tude. In contrast, our study addresses the opposite limit, assuming
that the oscillation decays to a finite amplitude. The combination of
these two approaches is an interesting future topic.

Another important question is whether the decay pattern is af-
fected by the apparent decayless phase caused by the interference of
the Alfvén continuum perturbations excited by resonant absorption,
found in numerical simulations by Soler & Terradas (2015) and Shi
et al. (2024). It is clear that the kink perturbations will eventually de-
cay toward zero from energetics considerations. However, this effect
may modify the decay pattern.

MNRAS 000, 1–8 (2024)
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Figure 3. Comparison of different models of damping patterns of kink oscillations with the initial amplitude 10. The blue solid curve corresponds to the
approximate asymptotic damping pattern of a self-oscillation for the coupling parameter 𝜇 = 0.03. The magenta dotted curve shows a super-exponential profile
with 𝜏se = 5 and 𝑝 = 0.55. The orange dash-dotted curve shows the exponential damping with 𝜏ec = 4 to the stationary amplitude. The brown dashed curve is
the exponential damping with 𝜏e = 5.5. The left and right panels have linear and semi-logarithmic vertical axes, respectively. The oscillation period is 2𝜋 time
units.

Figure 4. The effect of the coupling parameter 𝜇 on the damping pattern of
a self-oscillation. The solid burgundy curve shows the numerical solution of
the dimensionless self-oscillator equation in the case 𝜇 = 0.03, the dashed
blue curve shows the case 𝜇 = 10−3. The dotted blue curve demonstrates
the asymptotic damping pattern for 𝜇 = 10−3. In all cases, 𝑎 = 30, and the
stationary amplitude is 2.

For a broad range of the problem parameters, the oscillation period
remains almost constant, which is consistent with previous theoreti-
cal and numerical findings (e.g., Nakariakov et al. 2022; Karampelas
& Van Doorsselaere 2020; Nakariakov & Yelagandula 2023). It has
already been demonstrated that the kink oscillation period is insen-
sitive to the specific mechanism for sustaining the decayless regime
(Nakariakov et al. 2022), and hence the seismological techniques
based upon the oscillation period remain valid. The generalisation
of the zero-dimensional self-oscillation model to a one-dimensional
model (cf. Afanasyev et al. 2020), is necessary for the validation of
seismological techniques based on the use of the ratio of various
parallel harmonics of the kink oscillation (e.g., Andries et al. 2009;
Li et al. 2013).

For large initial amplitudes and coupling parameters, the oscilla-
tion approaches the decayless amplitude in less than one oscillation
period, see, e.g., the right panel of Fig. 1. This finding may explain the
relative rareness of decaying kink oscillations of coronal loops. If the
decayless amplitude is below the detection threshold, the motion of
the displaced loop appears to be a gradual return to the equilibrium,
without its overshooting and oscillations around it.

The findings presented in this work are obtained in terms of a zero-
dimensional model which neglects a number of effects. However,
this approach allows one to explore potentially the most important
features of the phenomenon of interest. The validation of our findings
requires and motivates further observational and numerical studies.
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a) Original TD map

b) Detrended TD map

Figure 5. A kink oscillation event on May 30, 2012, in active region
NOAA 11494, showing the transition from the decaying to decayless regimes.
The red solid and dashed curves correspond to the oscillation pattern and its
damping pattern, respectively. The green dashed curve represents the averaged
background trend of the oscillatory signals. The time–distance map shown in
panel (b) is obtained by subtracting the averaged trend from that in panel (a).
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